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Abstract 
 

This paper presents an algorithmic approach for optimizing energy storage system (ESS) capacity 
allocation across multiple electricity markets to maximize profits. The methodology involves 
collecting real-time and historical data on market prices, renewable energy forecasts and grid 
demand. Predictive analytics, including machine learning models, forecast future market conditions, 
while optimization techniques such as mixed-integer linear programming (MILP) determine the 
optimal schedule for charging and discharging. Reinforcement learning (RL) is integrated into the 
framework to enable dynamic, adaptive decision-making, allowing the ESS to continuously refine its 
market strategies. Key constraints such as storage capacity, charge/discharge rates and market 
regulations are incorporated into the model. A feedback loop ensures real-time adjustments based 
on market fluctuations, improving profitability over time. Revenue stacking across day-ahead, intra-
day, ancillary and balancing markets further enhances the financial viability of ESS investments.  

 
Key words: energy storage systems, energy transition, operation strategy, algorithmic approach, 
optimization 
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1. Introduction 
 

Energy storage systems (ESS) have an important role in electricity markets, enabling flexible grid 
management and enhanced renewable energy sources (RES). As electricity markets become more 
decentralized and RES proliferate, ESS have emerged as essential assets for balancing supply and 
demand, ensuring grid stability and providing ancillary services. However, effectively managing ESS 
across various markets requires a decision-making process to maximize profitability while adhering 
to operational and regulatory constraints. Participants can access a range of opportunities, including 
day-ahead markets (DAM), intra-day markets (IDM), ancillary services markets (ASM) and 
balancing markets (BM). Each market offers unique benefits and risks, driven by factors such as 
price volatility, market liquidity and grid demands. The challenge lies in efficiently allocating ESS 
capacity to the most profitable markets. This paper addresses this challenge by developing an 
algorithm that combines predictive analytics, optimization techniques and real-time data processing 
to dynamically allocate ESS capacity across these markets. 

The methodology proposed involves several steps, starting with data collection, where real-time 
market prices, RES forecasts and grid demand data are gathered. Predictive analytics, powered by 
machine learning (ML) models, generate forecasts of future market conditions. These predictions 
inform an optimization model that calculates the most profitable allocation of ESS resources, subject 
to constraints like ESS capacity, charge/discharge rates and market regulations. The optimization is 
formulated as a mixed-integer linear programming (MILP) problem, ensuring that the ESS operates 
within its technical limits while maximizing profit. 

“Ovidius” University Annals, Economic Sciences Series 
Volume XXIV, Issue 2 /2024

130



In addition to optimization, reinforcement learning (RL) is integrated into the algorithm to allow 
the ESS to continuously learn and adapt to market conditions. The RL framework ensures that the 
ESS respond to real-time fluctuations in market prices, grid demand and other variables, improving 
decision-making over time. By learning from its interactions with the market, the RL agent refines 
its strategy to achieve higher long-term profitability. 

The concept of revenue stacking is also explored, where ESS operators participate in multiple 
markets simultaneously or sequentially, optimizing their operations to capture value across different 
market segments. This strategy enhances financial returns by using the flexibility of the ESS to 
provide services such as frequency regulation, voltage control and energy arbitrage. 

This paper provides a comprehensive framework for ESS capacity allocation, using both 
traditional optimization techniques and advanced machine learning models. The proposed approach 
maximizes profits and also ensures that ESS are utilized efficiently, contributing to grid stability and 
RES integration.  
 
2. Literature review 
 

The integration of ESS into electricity markets has garnered significant attention in recent years, 
driven by the increasing penetration of RES. The literature surrounding ESS optimization primarily 
focuses on three key areas: energy market participation strategies, optimization techniques for 
capacity allocation, and the use of ML and RL for adaptive decision-making. 

ESS have become critical in managing the intermittency of RES, such as wind and solar, by 
storing excess energy during periods of low demand and releasing it during high demand. Several 
studies have explored how ESS participate in various electricity markets to enhance profitability. In 
these markets, ESS operators may capitalize on price fluctuations and provide critical services like 
frequency regulation, voltage support and demand response. ESS engage in energy arbitrage in the 
DAM and IDM by charging during off-peak hours and discharging during peak demand, thereby 
exploiting price differences (Wu et al., 2022). However, the importance of accurate price forecasting 
in maximizing profits is expanded by subsequent research. Moreover, (Wang, Liu and Wen, 2024) 
explored the potential of ESS for providing ancillary services. The research emphasized that ESS 
generate higher revenues through such services compared to energy arbitrage alone, particularly 
when revenue stacking across multiple markets is permitted. The concept of optimizing ESS 
operations was also introduced to simultaneously participate in several market segments, a strategy 
that maximizes revenue but introduces complexity in the decision-making process. 

Optimizing the allocation of ESS capacity across different markets has been a central focus of 
many studies, with several methodologies proposed. MILP has been widely used for formulating and 
solving the ESS scheduling problem. In their research, MILP models were further proposed for 
determining the optimal charging and discharging schedules for ESS in the DAM and BM, 
accounting for ESS constraints such as storage capacity, charge/discharge rates and efficiency losses 
(Muschick et al., 2022). In addition to linear programming methods, metaheuristic approaches like 
Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) have been applied to solve the 
ESS optimization problem in complex, nonlinear market environments. (Kim et al., 2020) combined 
MILP with PSO for ESS capacity allocation in electricity markets. Also, (Li et al., 2023) combined 
MILP and PSO to provide an optimal schedule. PSO provides faster convergence and better 
adaptability in highly volatile market conditions. While MILP is highly effective for deterministic 
scenarios, PSO and other heuristic methods are better suited for environments with uncertainty and 
stochastic variables. Stochastic programming has also gained traction as a method to account for the 
inherent uncertainty in electricity markets, such as volatile prices and unpredictable RES output 
(Bhattacharya, Kharoufeh and Zeng, 2018).  

As electricity markets become more dynamic, the integration of ML and RL into ESS 
management has been increasingly studied. ML models, particularly those based on time series 
forecasting, have been employed to predict market prices and grid demand with a high degree of 
accuracy. (Zhao, Zhang and Peng, 2022) illustrated the use of deep learning models, such as Long 
Short-Term Memory (LSTM) networks, to forecast power fluctuations caused by RES. Their results 
demonstrated the superiority of LSTM over traditional time series models. 
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RL has emerged as a powerful tool for managing ESS. An RL-based framework was developed 
that controls ESS (Abedi, Yoon and Kwon, 2022). These models employed Q-learning to maximize 
profits while minimizing wear and tear on the ESS. Advanced RL techniques, such as Deep Q-
Networks (DQN) and Proximal Policy Optimization (PPO), have also been applied to ESS 
management.  

Recent research has also focused on hybrid models that combine ML, RL and traditional 
optimization methods. The hybrid approach may demonstrate superior performance in both 
profitability and adaptability compared to single-method models. Multi-objective optimization has 
become increasingly relevant as ESS operators seek to balance conflicting goals, such as maximizing 
profits and minimizing system degradation. (Song et al., 2023) developed a multi-objective 
optimization framework to optimize the charge/discharge schedule in each battery.  
 
3. Research methodology 
 

Developing an algorithm to allocate ESS capacity to various electricity markets to maximize 
profits involves creating a decision-making framework that dynamically adapts to changing market 
conditions and price signals. An outline of how such an algorithm might be structured, using 
predictive analytics, optimization techniques and real-time data processing is provided. 

 
Figure no. 1. Steps of the proposed algorithm  

 
Source: Authors’ contribution 
 
The algorithm starts by gathering real-time and historical data on electricity prices across different 

markets (DAM, IDM, ASM, BM), weather forecasts (to predict RES supply fluctuations) and grid 
demand forecasts. Using historical data, the algorithm employs ML models to forecast future price 
trends and demand patterns in each market. Techniques like time series analysis, regression models, 
or more complex neural networks can be used. The core of the algorithm is an optimization model 
that calculates the most profitable allocation of ESS capacity across different markets. This model 
considers: price forecasts obtaining predicted prices in each market; storage constraints such as ESS 
capacity, charge/discharge rates and efficiency; risk preferences settings that allow the operator to 
manage risk versus return preferences. The optimization model uses a MILP to determine the optimal 
schedule for charging and discharging operations. The goal is to maximize profit while adhering to 
operational and regulatory constraints. The algorithm adjusts its operations based on real-time market 
data and unexpected changes in the grid (e.g., outages, sudden demand spikes). This involves 
recalculating the optimization problem to reflect new conditions and potentially shifting storage 
resources to more profitable or necessary uses. The outcomes of the algorithm’s decisions are 
continuously monitored and the results are fed back into the system to refine the predictive models 
and optimization framework, improving accuracy and profitability over time.  
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Pseudocode no. 1. Implementation 
def optimize_ESS_allocation(prices, demand, capacity, charge_rate, discharge_rate): 
    # Initialize optimization model 
    model = OptimizationModel() 
    # Define constraints 
    model.add_constraint('capacity_limits', capacity) 
    model.add_constraint('charge_limits', charge_rate) 
    model.add_constraint('discharge_limits', discharge_rate) 
    # Set objective to maximize profits 
    model.set_objective('maximize', prices x (discharge_rate - charge_rate)) 
    # Solve the model 
    optimal_schedule = model.solve() 
    return optimal_schedule 
# Run the algorithm every hour to update the ESS schedule 
while True: 
    current_prices = fetch_market_prices() 
    current_demand = fetch_grid_demand() 
    optimal_schedule = optimize_ESS_allocation(current_prices, current_demand, ESS_capacity, max_charge, 
max_discharge) 
    execute_schedule(optimal_schedule) 
# Wait an hour before recalculating 
    wait(1 hour)   

Source: Authors’ contribution 
 
RL is a type of ML where an agent learns to make decisions by interacting with an environment. 

In the context of ESS, the “agent” is the algorithm that manages the ESS and the “environment” 
includes the various electricity markets, price signals, grid demands and regulatory constraints. The 
goal of the agent is to maximize a reward function, which in this case is the profits from buying and 
selling energy at optimal times. The agent receives feedback in the form of rewards or penalties based 
on the actions it takes (e.g., charging or discharging the ESS at certain times), which it uses to 
improve its decision-making process. RL algorithms adapt to changes in market conditions without 
needing reprogramming or human intervention. This is essential in electricity markets where price 
signals and grid requirements can change rapidly. RL manages multiple objectives simultaneously, 
such as maximizing profits while minimizing wear and tear on the ESS. RL develops a strategy, that 
dictates the best action to take in a given market scenario. RL incorporates forecasts (like price, 
demand and RES supply) into its decision-making process, allowing it to make strategic decisions 
that account for expected future conditions. 

In an RL model for ESS, the state includes all relevant information about the current market 
conditions, state of the ESS (e.g., current charge level) and any other pertinent information like 
weather forecasts. Actions are the possible decisions the agent makes at any time, such as how much 
power to charge or discharge and when to engage in each electricity market. The reward function is 
related to profit to ensure that the RL agent’s goals align with the business objectives. The RL agent 
uses historical data and ongoing experience to develop and refine its policy for market participation. 
Over time, it identifies the best actions (strategies) to take in various situations to maximize 
cumulative rewards. To construct a mathematical model for maximizing profit from the allocation of 
storage capacity across various electricity markets, a range of variables are considered, including 
prices, capacity, charge and discharge rates and time constraints. Let us consider the following 
variables: 
 ௧ = charge amount (in MWh) at time tܥ
 ௧ = discharge amount (in MWh) at time tܦ
ܵ௧ = state of charge of the ESS at time t 

௧ܲ
 = price of buying electricity at time t 

௧ܲ
௦= price of selling electricity at time t 

  = charging efficiency of the ESSߟ
 ௗ = discharging efficiency of the ESSߟ
CAP = total ESS capacity (in MWh) 
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  = maximum charging rate (in MW)ݎ
 ௗ = maximum discharging rate (in MW)ݎ

The objective is to maximize total profit, which is the revenue from selling electricity minus the 
cost of buying electricity, integrated over the operational horizon T: 

൫݁ݖ݅݉݅ݔܽܯ ௧ܲ
௦ ൈ ௧ܦ െ ௧ܲ

 ൈ ௧൯ܥ

்

௧ୀଵ

 
(1)

The main constraints are: 
(1) ESS capacity constraints: 

0  ܵ௧  (2) ܲܣܥ
(2) State of charge dynamics: 

௧ܵାଵ ൌ ܵ௧  ߟ ൈ ௧ܥ െ ௗߟ ൈ ௧ (3)ܦ
(3) Charging and discharging rate constraints: 

0  ௧ܥ   and 0ݎ  ௧ܦ  ௗ (4)ݎ
(4) Non-simultaneous charging and discharging: 

௧ܥ ൈ ௧ܦ ൌ 0 (5)
Initial and final state of charge: ଵܵ is given and ்ܵାଵmay be set to a specific value or left free. 

The time increment t can be chosen based on the market intervals, typically hourly for many markets. 
Charging and discharging efficiencies (ߟ,  ௗ) reflect energy losses during these processes. Pricesߟ
( ௧ܲ

௦, ௧ܲ
) require estimation.  

Enhancing the mathematical model for ESS capacity allocation with RL involves incorporating 
an RL algorithm to dynamically adapt the ESS operation based on learned strategies from market 
interactions. In an RL framework, the objective is to learn a strategy ߨ that dictates the optimal 
actions to take in various states of the environment to maximize cumulative future rewards (profits 
in this case). This is achieved through interactions with the environment, which in this context 
consists of the electricity markets and ESS dynamics. Reward function R is defined as the profit from 
selling electricity minus the cost of buying electricity. 

RL algorithm starts with a random strategy ߨ or a baseline strategy for initializing ܥ௧,  ௧. At eachܦ	
time step t, observe the current state which includes ௧ܵ , ௧ܲ

௦, ௧ܲ
. Based on the strategy, RL agent 

determines the action ܽ௧ (either ܥ௧	ݎ	ܦ௧, ensuring that charging and discharging do not occur 
simultaneously). Then, it calculates the immediate reward ܴ௧ from the action taken and the reward 
and the new state are used to update the policy using an RL method like Q-learning, Deep Q-
Networks (DQN) or Proximal Policy Optimization (PPO), depending on the complexity and 
requirements. This process is continued, refining the strategy over time to maximize the expected 
cumulative reward. 

Stacking revenue streams from various electricity markets is a strategy for investors using ESS 
as a flexible tool. This approach involves participating in multiple market segments simultaneously 
or sequentially, maximizing the financial returns from the ESS’s operational capabilities. Thus, an 
ESS might be able to provide ancillary services while also engaging in arbitrage between the day-
ahead and intra-day markets. For instance, an ESS could be contracted for frequency regulation while 
still retaining some capacity for charging and discharging based on price signals from the DAM and 
IDM. In markets where simultaneous participation is not allowed or feasible, ESS can shift between 
markets based on seasonal, weekly or daily variations in market conditions. For example, during 
periods of high RES output, an ESS might focus on energy arbitrage due to significant price volatility, 
while in periods of grid stress, it might prioritize ancillary services. 

The revenue stacking strategy involves scheduling ESS operations to take advantage of the 
economic opportunities in these markets, sometimes participating in multiple markets within the 
same operational timeframe. It consists of (a) identifying overlapping opportunities where 
participation in one market does not preclude or undermine opportunities in another; (b) optimizing 
charging and discharging cycles to maximize revenue across different markets. For example, charge 
the ESS during off-peak hours using low-cost energy from the DAM and use the stored energy to 
provide frequency regulation in the ASM during peak hours; (c) monitoring real-time market signals 
and adjust operations dynamically. If prices spike unexpectedly in the real-time market, it might be 
more profitable to sell energy there rather than providing ancillary services; (d) optimizing for net 
metering and other incentives that might be available for using ESS to store and dispatch RES. 

“Ovidius” University Annals, Economic Sciences Series 
Volume XXIV, Issue 2 /2024

134



For instance, an ESS starts the day by charging during early morning hours when wind energy 
production is high, but demand is low, taking advantage of cheap electricity prices in the wholesale 
market. During the morning peak hours, it switches to providing frequency regulation services, 
earning premium payments. In the afternoon, it discharges to meet spikes in local demand, selling 
power at higher prices in the real-time market. Later, it may participate in the capacity market, 
ensuring availability during the highest demand periods of the day. Diversification across multiple 
revenue streams reduces financial risk as each market presents unique risks that may affect the 
profitability and operational strategy of ESS investments. A closer look at the risks associated with 
different markets and how these can be integrated into a mathematical model reveals that prices may 
fluctuate significantly due to unexpected changes in demand or supply conditions on DAM. 
Moreover, misestimations of DAM prices may also lead to suboptimal charge/discharge decisions. 
IDM are generally less liquid than DAM, which makes it more difficult to execute large trades 
without affecting prices. Prices may be more volatile within the day, impacted by real-time variations 
in demand and supply. Participating in ASM might lock the ESS into certain operational modes that 
preclude other potentially profitable activities. ESS might be reserved for peak demand periods, 
potentially underutilizing their capabilities at other times. On the other hand, high demands on ESS 
responsiveness and cycling may increase wear and tear on BM. Balancing responsibilities and 
compensation can vary, affecting predictability of returns. 

To factor these risks into a mathematical model, we use a risk-adjusted return approach that 
modifies expected revenue based on the risk profile of each market using the following variables: 

௧ܲ
 probability of successful trading in market m at time t; ܴ௧

 potential revenue from market m at 
time t; ߛ risk adjustment factor for market m, reflecting the unique risks of each market. We modify 
the objective function to incorporate these risks by adjusting the expected revenue using a risk factor 
that penalizes or rewards based on the risk characteristics of each market: 

݁ݖ݅݉݅ݔܽܯ ܧ  ሺ ௧ܲ
 ൈ ܴ௧

 ൈ ሻߛ
்

௧ୀଵ∈ெ

൩ 
(6)

Where M is the set of all markets. The risk adjustment factor ߛ decreases the contribution of higher-
risk markets to the objective function, thereby incentivizing safer, more predictable operations. Next, 
we add constraints that ensure compliance with operational and regulatory requirements for each 
market: 

ሺ ௧ܲ
ሻ

்

௧ୀଵ

 ݊݅ܯ ݈݀ݑ݄ݏ݁ݎ݄ݐ ݂ ,ݕݐ݈ܾܾ݅݅ܽݎ ∀ ݉ ∈  ܯ
(7)

Then, we define ߛ based on historical data and predictive modelling of market risks. For 
example: DAM and IDM might have lower ߛ values during periods of high price volatility, whereas 
ASM might have higher ߛ values during stable regulatory periods. 

 
4. Findings 
 

Average prices in electricity markets can vary significantly depending on a variety of factors 
including geographic location, time of day, season, market demand, supply conditions and the 
penetration of RES. In the DAM, electricity prices are determined one day before the actual delivery. 
Prices in these markets vary widely based on anticipated demand and supply conditions for the next 
day. Generally, prices might range from $20 to $60 per MWh, but during periods of high demand or 
supply shortages, prices can spike much higher, sometimes exceeding $100 per MWh. IDM allow 
for trading electricity on the same day of delivery, providing a mechanism to adjust positions taken 
in the DAM. These markets are typically more volatile. Similar to the DAM but can exhibit greater 
fluctuations. Prices might briefly peak at even higher rates during unexpected supply shortfalls or 
sudden demand spikes. ASM involves services that support the transmission of electricity from 
generators to consumers and help maintain grid reliability. Services include frequency regulation, 
voltage control and spinning reserve. The pricing is often premium due to the necessity and urgency 
of these services. Prices can be significantly higher than energy-only markets, sometimes several 
times the average DAM price depending on the urgency and the scarcity of available resources. 
Capacity markets are designed to ensure that there is enough power supply available to meet peak 
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demand. Participants are paid simply for being available to supply power, regardless of whether they 
actually generate electricity. Average payments range from $5,000 to $75,000 per MW per year, 
varying greatly by region and the reliability requirements of the grid (https://www.energy-
storage.news/evolution-of-business-models-for-energy-storage-systems-in-europe/). BM manage 
the real-time variability in electricity supply and demand, ensuring that the grid remains stable. Prices 
in the BM can be highly variable. They range from negative values (when there is excess supply) to 
several times the average DAM rate during times of tight supply.  

Estimating the potential annual revenue for an investor with a 10 MW installed ESS capacity 
requires some assumptions and calculations to provide an approximate estimate for different market 
scenarios. We assume its participation in DAM, IDM, ASM and capacity markets, and the following 
prices: for DAM, average price of $40/MWh; for IDM, average price similar to DAM but with higher 
volatility; for ASM, premium services might offer prices ranging from $50 to $300/MWh depending 
on the service and urgency; and for capacity market, an average payment of $20,000/MW per year.  

We model the annual revenue from each type of market participation based on typical market 
operation scenarios: DAM and IDM-assume an average operational strategy where the ESS charges 
and discharges once per day (full cycle), with average price $40/MWh for buying or selling, energy 
cycled daily 10 MW x 1 cycle/day = 10 MWh/day. Let’s assume 250 effective operational days/year 
(accounting for lower price days and maintenance), the revenue is 10 MWh/day x $40/MWh x 250 
days = $100,000/year.  

For ASM, assume participation in frequency regulation, priced higher due to its necessity, average 
price $100/MWh (conservative estimate for premium services), daily participation: Assume 4 hours 
of service per day at full capacity, effective days 300 days/year (high demand for grid stability 
services), the revenue is 10 MW x $100/MWh x 4 hours/day x 300 days = $1,200,000/year.  

For capacity market, the annual payment rate: $20,000/MW and the revenue is 10 MW x 
$20,000/MW = $200,000/year. Total estimated annual revenue is from DAM and IDM ($100,000) + 
ASM ($1,200,000) + Capacity Market ($200,000). The total is $1,500,000/year. These costs need to 
be subtracted from the gross revenue to obtain net profits. 

Three alternative scenarios are envisioned for a 10 MW ESS operation: 
1. Scenario 1. Volatile IDM-Higher prices in the IDM lead to increased revenue from the DAM 

& IDM market. 
2. Scenario 2. Higher ASM demand-A significant increase in ASM prices results in the highest 

total revenue. 
3. Scenario 3. Reduced DAM/IDM participation-Reduced effective operational days for DAM 

& IDM lead to lower revenue from those markets. 
Figure 2 breaks down the revenue contributions from DAM & IDM, ASM and the capacity 

market.  
 
Figure no. 2. Revenue contributions from various markets 

 
Source: Authors’ contribution 
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Table 1 summarizes the revenue from different markets under each scenario, along with the 
assumptions driving those changes. 

 
Table no. 1 Assumptions for each scenario and revenues 

Scenario Assumptions Revenue 
from DAM 
& IDM ($) 

Revenue 
from ASM 
($) 

Revenue 
from 
Capacity 
Market ($) 

Total 
Revenue 
($) 

Base 
Scenario 

- ESS Capacity: 10 MW
- DAM & IDM Price: 
$40/MWh 
- 250 Operational Days for 
DAM/IDM 
- ASM Price: $100/MWh
- ASM Participation: 4 
hours/day, 300 days/year
- Capacity market payment: 
$20,000/MW/year 

100,000 1,200,000 200,000 1,500,000 

Scenario 1. 
Volatile IDM 

- IDM price increases to 
$60/MWh 
- All other assumptions 
remain the same 

150,000 1,200,000 200,000 1,550,000 

Scenario 2. 
Higher ASM 
demand 

- ASM price increases to 
$200/MWh 
- All other assumptions 
remain the same 

100,000 2,400,000 200,000 2,700,000 

Scenario 3. 
Reduced 
DAM/IDM 
participation 

- Only 150 operational days 
for DAM/IDM
- All other assumptions 
remain the same 

60,000 1,200,000 200,000 1,460,000 

Source: Authors’ contribution 
 
A comparison of potential annual revenues across different ESS operational scenarios is provided 

in Figure 3.  
 
Figure no. 3. Potential annual revenues across different ESS operational scenarios 

 
Source: Authors’ contribution 
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5. Conclusions 
 

The analysis of alternative scenarios for energy storage system (ESS) operation provides several 
important insights. First, it is clear that revenue diversification significantly enhances the profitability 
of ESS operations. The ability to participate in multiple markets, including the DAM, IDM, ASM 
and the capacity market, offers strong financial advantages. This diversification buffers against 
market fluctuations and ensures a more consistent stream of income, even under varying conditions 
such as volatile IDM prices or reduced DAM/IDM participation. In the scenario where IDM prices 
increase due to market volatility, the total revenue sees a modest increase. This demonstrates that 
price fluctuations in the IDM may positively affect revenues, particularly if the ESS capitalize on the 
volatility by adjusting its operations. However, while beneficial, the impact of volatile IDM prices 
on total revenue is relatively modest when compared to the changes observed in ASM conditions. 

The analysis further shows that higher prices in the ASM have a profound effect on total revenue. 
When ASM prices increase, the total revenue jumps significantly, illustrating that ancillary services 
play a crucial role in revenue generation. ASM-related services such as frequency regulation can 
provide much higher returns than traditional energy arbitrage in DAM or IDM. Thus, ESS operators 
should prioritize participation in ancillary services to maximize profitability. 

On the other hand, when DAM/IDM participation is reduced due to fewer operational days, the 
total revenue declines. However, ASM and capacity market revenues help to stabilize overall 
earnings. Across all scenarios, ASM consistently generates the highest revenue compared to 
DAM/IDM and the capacity market. Even in the base scenario, the contribution from ASM 
dominates, highlighting its importance as a revenue driver for ESS operators. The capacity market, 
while offering lower returns compared to ASM, provides stable and predictable income. This revenue 
stream helps cover fixed costs and serves as a hedge against the volatility of other markets. In 
conclusion, stacking revenue streams from multiple markets and adopting flexible, dynamic 
strategies are important for maximizing financial returns.  
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